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SURFACES*

V.A. KOKUNOV B.A. KUDRYAVTSEV AND N.A, SENIXK

Static electroelasticity equations are used to study the stress state and
the electric-field distribution in a piezoelectric layer at whose surface

a periodic system of infinitely thin electrodes is situated. It is assumed
that the layer material is piezoelectric belonging to the 6mm symmetry
class, and the axis of symmetry is perpendicular to the middle surface of
the layer. The mechanical displacements and electric potential are
determined, taking the periodicity of the electrode system into account,

in the form of trigonometric series, and the electrical and mechanical
boundary conditions at the layer surfaces lead to the dual series equations
whose soluticn yields the expression for the electric charge distribution
density on each electrode. Formulas are given for determing the electric
potential at the layer surfaces between the electrodes, and the mechanical
stresses near the electrode edge. It is shown that the normal stresses at
the layer surface have a singularity at the electrode edge /l1/ whose presence
may lead to the appearance of microcracks within this zone.

1. we shall consider the plane deformation of a piezoelectric layer |z |<_h, |z |< x
caused by the action of the electric potential difference on the periodic system of electrodes,
with the electric potentials V¥, and —V,on the upper face z= h and lower face z=—h
of the layer (Fig.l). 1In the case of a piezoelectric material of class 6mm, whose axis of
symmetry coincides with the z-axis, the components of the stresses and electric induction are
given by the formulas

éu u oq |
Oxx = — - = 7 rral) 7y (1.1)
3z 3z 82 3z
ou ou . o
= — —— | — €15~
O2x C“( oz + 0x ) 157
D, = eys {22 e ~—a$ D, —ey St ¢ ou —e”s——aq (1.2}
Yx=615{57 or ) TET B : 815y Tt T 0z
Here ¢y, C;9. C33. €4y axe the moduli of elasticity, ej;. €35, €;; are the piezoelectric moduli,
Eng Saf are the dielectric constants, u, w are the components of the displacement vector

in the direction of the z and z axes respectively, and ¢ is the electric potential.
The mechanical displacements u,# and electric potential are found from the system of
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equations of equilibrium and of electrostatics, which can be written, taking equations (1.1)
and (l1.2) into account, in the form

3 du | Jw %
Cua—:,+Cua—;;-r(cu-'{-cu)m‘f'(eu+els)a:—g,z‘=0 (1.3)

9% w dhw [ ot

(c1s + Cu)m + Cu o -+ Cas oy + 2y -+ e“'a_;r7=0
8%u M Nw L &

(es1 + 915)5;5 -+ euﬁ -+ eaa-g;—fusa—:;‘ —eg3° -5;?- =0

Taking into account the symmetry of the electroelastic state relative to the plane z =
0 and the periodicity of the functions u (z,2), w (z, 2), ¢ (z,2) with respect to the r coordinate,
we shall write the solution of system (1.3) satisfying the conditions

w(z,=¢(, 0 =0,(x0=0
in the form of the series

u(z,z)=2 3 [@14in ch(k1hnz) + (@281, — 22:C1p) ch (Bhaz) X (1.4)
n=1

08 (9hpz) — (@22B1n — @21C1n) sh (8An2) sin (Whn2)] sin hpz
w(z,z)=Wez+ 225 ¢(z,2)=Doz— 22y
Se= 3 [— %141 sh (k1hnz)— (%21B1n— %22C1n) sh (Bhpz) cos (hnz)+
n=1
(%20B1n — %21C1n) ch (Ohnz) sin (wWhn2)] cOshpzy % =Py

x =3 k) Xy T iYpe =% (8 L iw), x =10, §, ¥y

a (k) = ay,0,5 — 43385, B (k) = —aya,5 — 415035, k) =
ay0y; — Q18y
@y = ol — e = —ay =k (613 — Cu)y 1y = ag =
—k (€5 — eyy)
Qgp = C3k? — Cusy Qg3 = —0gp = —€35k — €14, Qg = £335k° — ¢,,S

Here A, = nn/L, W,, @y Ay, By, C,, are constants and -k, 48§ 4+ iw are the roots of the
equation det | ay, || = 0.

Az
Vs Yy (4 A
[} i
i L i :
l -L1-a [0 oL
ul ]
~Vq =y [-h A
Fig.l

Using formulas (l.4) we obtain the following expressions for the stresses and the electric
induction in the layer

Oa = 2Z(m), Op = CysWy + e33@y + 231y’ (1.5;
Oz = C13Wo + 1@y — 2 E: An {—myky A)nch (kihgz)+
ne

[(— 8mz + wmy) ch (81,z) €08 (Whyz) — (Smy + w@mg)sh (82,2) X

sin (whnz)] Biy, -+ [idem (my — — my;, mg — my)] C1p} cos A,z
D, = egsWy — £455D, zz(ln)' D,=2Z,,
Sy = n§1 An{— l1Asn sh (krdnz) = [— Iy sh (BApz) cos (whnz)

Iy ch (8hqz) sin (@Anz)] By, + [idem (Iy — — Ig, Iy — 1)) Cyp) sin Az
oy \ L ; , .
Sy = Z . {T, A ¢h (k1haz) + [(8'y + wly) ch (Shyz) cos (whnz) —

n=1

(8"l — w'ly) sh (84.,2) sin (wh,z)] By, —
[idem (I — Iy, lsy— — 1) Cy ) cos Az, l=m,n

’ o ' [
&= 2! ? m=6’+m’
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my = e — o (B + ey, my = £y5¥s, — Cqs (@28 —
@tg + Bu)
Mg = eygPey — oy (Byg + way + Puy)
ny = ey ey By + ki), ny = =t 5Ve —~ &5 (bag; —
Wty + By
Ry = -5y — o5y (Bogy + @y - Byy)
Here idem (-) denotes the expression cbtained from the expression within the preceding
square brackets when thesymbols are changed as shown. The following equations were used in

deriving (1.5):

ey — €13 (6Bg — 0Py) + €51 Sy — 0V} = —bmy + omy
ey — €13 (0B5 + 0Py) + ey (byp + 0yn) = —bmy — om,
tuty — ok By 5 egkyyy = mik,

9%y — Cxglifiy + egkyyy = myiky

Crafay — €3 {8Byy — ©Pgy) + €35 (8vyy — 0yy) = &'my + @'my
Cra%yy — C3q (6Bay — 0Py) -« €35 {8y + @y) = &'my — @'m,
€310 — e33kify — e55k Y = n'ky

€ty — €55 8Py — 0By} = €355 (Byyy — Wyp) = 'ny + w'ny

a)lyy — €35 (8Pyy — ©By)) — £555 (8yp = wyyy) = 8'ny — 0'my
Suppose there is no mechanical load at 1= +h ., Then the conditions
Oy = 0, =0, 2 = Lh (1.6}

will hold, provided that we assume that

Ay =k, (my® + mg?) [0’ sh (Bhk) ch (8hf) —~ (1.7)
& sin (@i, h) cos {wi k)] 4,

By, = my {ky sh (kyih) [(8'my — @'my) ch (81,h) cos (wh, k) -
{(8'my, — ©'my) sh (80,h) sin (@rph)] — ch (k) 2pn) %
Img sh (87.,0) cos (@i h) — m, ch (8h.h) sin (wi )]} A4,

Crn o= my {ky sb ik {8 my — @'myg) ch (8i,k) cos (winh) —
(§'my — @'my) sh {8700 sin {wiyk)] -
ch (kialt) Imy ch (82,4) sin (wih) —
m, sh (8r,h) cos (wh )} A,

Wy = —eg5y gy

Substituting expressions (1.7) into (1.5) for g, and D, we obtain the electric
potential and component D, of the electric induction vector on the layer surface

Glrh)y=Doh — ¥ fipAncosing (1.8)
n=]
D (r, hy= — 3%y = > 2 A cos hpr (1.9
s}

Jin = @y sh (kyhh) sh (287,h) — @, sh (kyhpk) sin (Qwigh) —
@, ch (kyhgh) (ch (260,h) — cos (20Inh)), A,® = 1,4,

fon = dy ¢h (kih,h) sh (280,0) — d; ch (kh) sin (2wih) —

dy sh (kaqh) (ch (28h.h) + cos (2whLh)), £g5* = €555 (1 +
€35° (c3s€35%))
Oy =k Iy (m — mg®) @y (8'my — a'my} —
My (8'my ~ w'my)]
D, = k, idem (0" — &', 8" — —w')
dy = myk, (8% — @F) (myng — myny)
dy = lny {m? = mg®) @ = mym, (§'ns — w'ny) — mymy {88, — w'ng)l
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d, = idem (@' — §', §' — —@"), Qg = m,; (Ypms — Taay)

We shall write the boundary conditions at the surface z =k in the form

Qlr, b=V, 020 (1.10)
D,z W)y=0, el L {1.11)

Then, taking into account (1.8), {1.9) we can conclude that the conditions (1.10), (1.11)
lead to dual series equations for determining the coefficients A,

1
EF AP coshpr=Vo—Deh. 0L r<Lar F= ;" (1.12)
n=1 *
gDy S A AP coshar =0, a2z LL (1.13)
fne=l

2. Passing now to the problemof sclving the dual equations (1.12), (1.13), we write them in
the form

21 AP coshpz =P, (Vo — Doh) - 21 R, AP coshz, 0L <Ca 2.1
T nas;
- E£5a* Dy 2 AadPcoshpr =0, a2z <L (2.2

dp~d3
s

Ry=1—=B,Fo limR,=0 B, ,=
R
We introduce the auxilliary function f{r) , assuming that
o
— egg*®, - 2.13.,‘,45?§ coshar =f{z), O0Lr<Ca (2.3)
=
Then from (2.2) and (2.3) we obtain

.

a a
—fss'd)o‘-‘—“"%' Q FE)dE A AT = "[2° \f(f) €08 hunt dt (2.4}
o

=3

Substituting (2.4) intc (2.1} and using the expression /2/

COs 4, 7 008 "at

L : P
- == — ——1In(2{cos 2z, — cos 2, | (2.5
=1 n

(g, = az (2L). t, = at (2L))

we obtain the integral eguation in f (2}
a

R conh z p
____t{_gi(t)mn L —cos %, ) di = g*(tD_LDO;,).»TZ————————\f(a‘)cownta’i 0<z<e (2.6)
o n=1

N

Tc solve Eg.(2.6) we introduce new variables £ and {. connected with z and t by the
following relations:

cos 2z, = cost g, < sin?a, cos 2%, (2.7
cos 24, = cos®a, — sin’a, cos 25,

[ Al . A Lt

W= = 3 T Ip

Changing to the variables ! §, we shall use the expansion

: L - o cosh fcosh, ]
"‘“Eg"ll}(zichzf*”COS:?*i)z—.—_,;lrl(lsxnza*)mz__ﬁ:;.._..ﬁ_.
=1
and write Eq.(2.6) in the form
¢ 2 g - cox 1,5 cos 2
SRR (PR P e P
o T b1

L
BV q_wz)wzmmg(,m D 17 con ot G

L e

O =700 (E)
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We shall geek the colution of (2. 8) in +ha ¥ € o mmerd me
........... SCLALLICH OX (4.2, 1N Ule Ior 1L @& Beries
oc
FEENE @ = 3 amcoshnl (2.9)
m—

o= 4\ 1(1) @t = — exs*®y

*

o

Then, taking into account the expansions /3/

e £ 7% ‘(1 l A g gy :‘\ alin) IR
cos{Anz (E)) = 2 Pk cosm,:, €0s (At (L)) == 2 P COSAL (2.10)
e =0
n=1,2... .M =0 for k> n)
we obtain, from (2.8), an infinite system of algebraic equations for determining the constants
Qe
-t (n) (R)gin B 1
@ [In@sinta,) ~ T8 ~2 310 602] - Vo 3 SRR~ — B v (2.11)
n==3 L n=3
o -3 o
R R
?.aoZ——n By — Zm + Yo, 3 rppr =0 (2.12)
TN= &=1 n=}

Returning in (2.9) to the variable t and using the well-known relations for the Chebyshev
polynomials T:m 121, we obtain the following expression for the electric charge density at
the upper electrode system:

P — Z(— 1" i (S ) (2.13)

yco 2t ~— cos?a,

Taking into account (2.13), we obtain the solution of the system (2.1), (2.2) in the form

n
AP = [2087 + D a,B"]A7 (2.14
=}
Let us now determine the electric and normal stress o, at the layer surface z=h.
Using {(1.5), (1.7), (1.8) we find

q(x,h):@oh—-—-s-i (t)1n (2 {cos 2z, — cos 24, |) dt — ;‘ZR,‘A‘,?‘coslnx (2.

n=1

ot

oy

my (me? <+ ma?)

Ore (2, ) = ofs — —-%B;m—a—-(” b —w — A'’) n(a—z)f(z)— —%n—a ZG,LA??." coshnr  (2.16)

1= 3
n=1
my (mg? o ma? . .
0;0;: %:831* - AR O N (dgaw-lf;m's) (2;{10)6 — ] k;g(ﬂ}f‘sst} (DQ

JanGrn = £ [¢h (k2 h) sk (282,h) —sh (kiaqh) (eh (282,0) +
cos (2wink))] -+ geh (khnh) sin (2wlnh)

g = 2k08'd;, ~ (0 + k2o’ en* = g5 (1 — cipe55'{casea))

g = kb — w— k), — (6 — k*0')d, — ds)
(m (z) is a unique function). Eqg.(2.16) implies that the stress 0. (z, k) has a singularity
at the edge of the electrode.

3. A numerical analysis of the electroelastic fields in the strip was carried out for

the piezoelectric¢ material P2ZT-4[4] for a'h=3, L/h = 18, In the series representing the coef-

ficients accompanying the unknowns a, =;. ... of system (2,11), {2.12), only the first four
were retained. The truncated system was used to determine a,. ...,

@3 , and then

1
Al ]
6.?0 3 i CloL 1 s N
\\ i (p(z.h)=®oh——~~;{a—: 1 (2 sin? o4) 4
! = .
o3 \ i ;‘2{73(-* 1" Ty, (va) — B,AL cos r.nz}
\’r : — n
— e g o
: ! 0 z<Ca, (Te = sinz/sin ay)
| IS N oo |
q s : :
g e z was used to confirm condition (1.10). The discrepancy in satisfying

Fig.2 condition {1.10) did not exceed 1% for all values 0gr<Cae. In
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the region outside the electrodes, the electric field potential at :z=h was calculated using

V- UUENOR R
LOormula

o
P k)= Oh— B3 Y R, AD coshz — (3.1)
n=1
L Zm
—ﬂ;lZ(—i)me g cos (2mn) In (4 | cos? 1 sin? ay — sin? z | ) dy
m=0 o

obtained from (2.15), (2.13) after transforming the integral term. We note that the gquadratures
appearing in (3.1) can be computed for m=20,1(z|>a) Fig.2 shows how @,=g¢/V, changes with

x when 2=h (dashed line). The solid lines show the variation in the stress o= oy /(Veey).
computed from (2.16). Analysis of the numerical results shows that at the edge of the electrode
the stress o; has a root-type singularity caused by the change in the electrical boundary
conditions.
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