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THE PLANE PROBLEM OF ELECTROELASTICITY FOR A PIEZOELECTRIC 
LAYER WITH A PERIODIC SYSTEtl OF ELECTRODES AT THE SURFACES* 

V.A. KOKUNOV B.A. KUDRYAVTSEV AND N.A. SENIK 

Static electroelasticity equations are used to study the stress state and 
the electric-field distribution in a piezoelectric layer at whose surface 
a periodic system of infinitely thin electrodes is situated. It is assumed 
that the layer material is piezoelectric belonging to the 6mm symmetry 
class, and the axis of symmetry is perpendicular to the middle surface of 
the layer. The mechanical displacements and electric potential are 
determined, taking the periodicity of the electrode system into account, 
in the form of trigonometric series, and the electrical and mechanical 
boundary conditions at the layer surfaces lead to the dual series equations 
whose solution yields the expression for the electric charge distribution 
density on each electrode. Formulas are given for determing the electric 
potential at the layer surfaces between the electrodes, and the mechanical 
stresses near the electrode edge. It is shown that the normal stresses at 
the layer surface have a singularity at the electrode edge /l/ whose presence 
may lead to the appearance of microcracks within this zone. 

1. We shall consider the plane deformation of a piezoelectric layer / L i<h, /z I< x 
caused by the action of the electric potential difference on the periodic system of electrodes, 
with the electric potentials I'0 and -r,on the upper face z = h and lower face z=-h 
of the layer (Fig.1). In the case of a piezoelectric material of class 6mm. whose axis of 

symmetry coincides with the z-axis, the components of the stresses and electric induction are 
given by the formulas 

. 
a == cn g - c,+- T ealx, 
a,,=cll(~ + ~) i .I.; arr=C1s~ TC119g -+~ 

(1.1) 

.Li, = els ($ A g) --~,~a -$ 
du 

D, = es1 z - ess + -Ft# s (1.2; 

Here cl,, c13. CSS. CU are the moduli of elasticity, es,. eSS, e,, are the piezoelectric moduli, 

E$, EIZ are the dielectric constants, a, ut are the components of the displacement vector 
in the direction of the I and z axes respectively, and CF is the electric potential. 

The mechanical displacements a, U and electric potential are found from the system of 

*prikl.Matem.Mekhan.,49,3,485-491,196s. 
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equations of equilibrium and of electrostatics, which can be written, taking equations (1.1) 
and (1.2) into account, in the form 

Taking into account the symmetry of the electroelastic state relative to the plane z = 
0 and the periodicity of the functions ~(z,z),~(z,z),(~(z,z) with respect to the z coordinate, 
we shall write the solution of system (1.3) satisfying the conditions 

in the form of the series 

W (2, 0) = v (I, 0) = o,, (I, 0) = 0 

cos (&5) - (w2ZBl. - azlC1,) sb (6Q) sin (O&z)] sin bJ 

w(z,i)= W,; 7 2;c,, ~(z,z)=(Doz- 22, 

Z,= f$ [- xlAI,,sh (klh,~)-(%ZIBln-X**C~n) sh(b~,z)cos(o&,z)+ 

(1.4) 

n-1 

(x&~-- ~~~C~~)~h(61.,~)sin(~,h,z)]coei.,z, x = BY y 

x = x @I), x21 -7 iI,, = 7. (6 A Lo), x = a, 8, s 

a (4 = QUQS - Q13Qz2. b (k) = -QnQzs - QlsQlzq Y @I = 

QlIQ2? - Q12Q21 

Q ll = c,,k’ - cI1. a,, = -azl = k (~~8 - c,,), Q,a = as1 = 

--k (es1 - els) 

a 22 = c,,k’ - ~11, Qs3 = -Qs2 = -e,,kz L e,,, OS8 = ssssk2 - ~6 

Here h, = rrn’L, W,, @,, A,,,. B,,. C,, are constants and kk,, +S t io are the roots of the 
equation det(j Qkr\\ = 0. 

Fig.1 

Using formulas (1.4) we obtaic the following expressions 
induction in the layer 

for the stresses and the electric 

(1.5; 

I(- 6m2 + oma)ch (&,z)cos(~A,-) - (6ml + oml)sh(6L,z) x 
sin (o&z)] B1, i [idem (mt -, - ma1 ma + ml)] C,,} cos h,z 

D, = es*W, - &UJ~A 2&,,. D, =2&o 

&, = 5 J., f- LAl, sh (k&z) - [- 11 sh (&,z) cos (o&z) + 

Ischn(gfh,l)sin(~~,z)]B,, + (idem(&-+- ls,18~lz)]C,,)sin )i,,r 
0 

P' WI) = 
N 

) .n + =l,,ch (&z) + [(6'1, $ o'lS)ch (8&z) cos(oh,z) - 
"==I 

(&La- ~'12)sh (&,:)sin(~&,z)] B,, - 

[idem(& -+ 18, la +-Z*jC~,lcosh,z, 2 = m,n 

6,=&T- 1 m’= #&’ 
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mu = e1a1 - ~44 $5 J- ktalL m2 = elsy2, - c,, (a,,6 - 

oQ22 i f&d 

m3 = e12v22 - c44 Pa22 -t @a21 + B22) 

n, = --IPI - fb 0% -+ haA n2 = --~1,~~2~ - e15 @CC,, - 

@%z + B*,) 

'h = --E&'22 - e1s f&2* -!- @Kzl + B2J 

Here ideln (*) denotes the expression obtained fromtheexpression within the preceding 
square brackets when thesymbols are changed as shown. 
deriving (1.5): 

The following equations were used in 

e11a2, - Cl3 (W,, - 422) + e31 (b,, - ~2,) = --6m2 + am3 

%a22 - cl3 (Y22 I @21) -I- e3, (b22 -+ ~2~) = --6m3 - om, 

elIal - e13klB1 -L e3Jw = ml% 

es1 - e33klB, - e33k,v, = mitkl 

e13a21 - e33 w,, - 432) + e33 (b2, - ~~221 = b’m2 + a’m3 

c13a22 - cQ3 {&2 - @@2l) I e33 (6v22 1 qfl) = d’m3 - o’m2 

eSial - e33kA - e33%v, = n,‘k, 

wzl - e33 (Q2, - 4M - ~~3~ (b, - ~22) = S’n2 A w’n3 

e,,a,, - e33 (Sg22 - h&) - s33S (6~22 A 0~2,) = 6’n3 - o’n2 

Supposf there is no mechanical loat! at z=i_h. Then the conditions 

tr,, = u,, = 0, z = &h 

will hold, provided that we assume that 

Ai,, = k, (m,’ T m,‘) iw’ sh (&.,h) ch (6X&) - 
S’ sin (oi.,J) cos fwi.,h)l A, 

B,, = m, {k, sh (k,i,h) l(d’m, - o’m2) ch (6i.,,h) co5 (o&h) A 
(6’m, - ofma\ eh (&A&) ::II (o&$)1 - ch (kli.,ti) x 
h, sh i6i.,hj CO!: (oi.,hj - mz ch (d%,h) sin (d&)1) 4, 

L,, = m, {k, sh (k,i.,h) 1(6’m, - o’m,) ch (&&h) cos (oZ,h) - 
(&'m, - o'm,) sh (G.,ii~ sill (wi.,hil - 

ch (k,;.&) im, ch (bi.,hi sin (oi.,h) - 

m2 sh (&.,ii) CO' (oi,ii);~ A,. 

Ii‘, = -e&D, cs3 

Substituting expressions (1.7) into (1.5) for 0,; and D,. WE obtain the electric 
potential and component 13, of the electric induction vector on the layer susface 

( 1 ‘  6 ! 

(1.7) 

j2n = d, ch (klj.,,h) sh (Zc%,$) - d, ch (k&&) sin (2o%,h) - 

d3 sb (k,i.,,h) (ch (26&h) T cos (hi.,h)). Egg* = ~33s (1 -j- 

e33* (e33e33?) 

cDD, = I;, iv (m2* - maz) 0’ - m,Ta (b’m, - o’m,) - 

mlyzs (6’m, L o’m,fl 

Q2 = k, idem (w' - 6'. 6' -+ -w') 

d, = m,k, (6’* - w’~) (m2na - m,n,) 

dl = In, (m2? 7 ma?) w’ - m,m, (6’n, - w’n,) - m,rn2 (6’n, - o’n,)l 
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d, = idem (0' -f 6', 6'-+ --CO‘), (D, = ml (yplms - %cmd 

We shall write the boundary conditions at the surface z = h in the form 

Then, taking into account (l‘s), (3.9) we can conclude that the conditions (1,10), (l.lt) 
lead to dual series equations fox determining the coefficients A,,(@ 

2. Passing now to the problemofsolving the dual equations (1./Z)? (1.13),we write them in 
the form LI) B 

We introduce the auxilliary function fir) # assuming that 

--fga*&, +&,.4%0~?&=- f(r), 0 <s<a 

Then from (2.2) and (2.3) we obtain 

-epssWO=+~!(E)dt. h,At)===+ ~~(~)~~~j.~~~~ 
b b 

Substituting 12.4) into (2.1) and using the expression /f/ 

(2.3) 

(2.4) 

(r, = nx (X). t, = nt (X)] 

we obtain the integral equation in 1 (I) 

Tc solve 5q.i2.6) we introduce new variables E and ;. connected with r and t by the 
following relations: 

Changing to the variables 5. 5, we sh+li use the expansion 
h- 

- &In (11 co; ‘r, - co; 3, I) = - &In (2 Fir? a,) - -r: CO> ;.,: cm i.,: 

24 
=1 

and write Eq.(2.6) in the fcrm 

(2.8) 

(I* (5) = f (t (3) 2’ (F)) 
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(2.9) 

We shall seek the solution of (2.8) in the form of a series 

05 
f(l (Q)t'Gl= 2 a,caeM 

m=rl 

aC= + [f(i)& = - e&D, 

Then, taking into account the expansions /3/ 

COS(h,l(E))=i &~~'cosh*E. cos(h,t(i))= ,$C B?'cosh,S (2.10) 

(n = 1, 2. . . ., fih.cn) = 0 for k > n) 

we obtain, from (2.@), an infinite system of algebraic equations for determining the constants 
% 

Returning in (2.9) tc the variable t an? L using the well-known relations for the fhebyshev 
polynomials T*,El I we obtain the following expression for the electric charge density at 
the upper electrode system: 

Taking into account (2.131, we obtain the solution of the system (2.1), (2.2)in the form 

Let us now determine the electric and normal stress CT, at the layer surface z = h. 
Using (1.5), (i.T), 11.8) we find 

'I(x,/i)=@(ili-+ , ~~((jln(3~cos?2,-cos?!,])dt-~B;'e,A~~'cos?,~x (2 ,c,‘ .*-, 
0 ?I=1 

a, (I, h) = OK - ml ff<--rm3*) plo6’ I u - k,%J’) q (a_s)j(r)- m, y;y 2 G,A’,O’k, cos x.,x !2.iO! 
R=l 

rg, r 
u,,= lesl* -7 3 (v” + -7 (&& _ &l- &?w’) ESS*f c& 

4 --A 

f,,G, = g, Ich (k&$z.) sh (%i.,h) --sh(k,i& (ch (2&h) + 
CDS (?6&!z)) I -; g,cb (!%,5.,h) sin (Zoi,h.) 

g, = Zk,dd, -: (o i k12a’)d3. eglr = es, (1 - c,3e3s’(%%1)) 

g, = (2k,d’ - w - k,?o’)d, - (6 - k,‘6’)@, - d,) 

(11 (2) is a unique function). ~q.(2.16) implies that the stress o&(&h) has a singularity 
at the edge of the electrode. 

3. A numerical analysis of the electroelastic fields in the strip was carried out for 
the piezoelectric material PET-4 IS] for a.'h=3. L/h= 18. In the series representing the coef- 
ficients accompanying the urinowns aO.a,.... of system (2.11), (2.121, only the first four 

were retained. The truncated system was used to determine CL~. . . . . 

f 
as, and then 

q (I. h) = Qoh - -$ In @sin* 0*) f 

oz 
0,s &'z/&(- 1)” T*,,(y,,)- R,,.4;) COS hn=) 

n=, 
O<z<a. (T* = eia2.G 0.1 

0 20 4‘2 
was usec? to confirm condition (l.lO!. The discrepancy in satisfying 

Fig.2 condition, (1.10) did not exceed 1% for ail values O<T<U. In 
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the region outside the electrodes, the electric field potential at z = h was calculated using 

formula 

(3.1) 

obtained from 
appearing in ( 
x when r=h 
computed from 
the stress a,, 
conditions. 

~0s (2mn) In (4 1 cos’q sit12 a+ - sin’ I I ) drl 

0 

(2.15), (2.13) after transforming the integral term. We note that the quadratures 
3.1) can be computed for m= O,l(I=I>u) Fig.2 shows how o.=qIVO changes with 
(dashed line). The solid lines show the variation in the stress o = oxxh i(V,r,,), 

(2.16). Analysis of the numerical results shows that at the edge of the electrode 
has a root-type singularity caused by the change in the electrical boundary 
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