REFERENCES

1. LUR'E K.A., Optimal Control in Problems of Mathematical Physics. Moscow, Nauka, 1975.
2. LAVROV N.A., LUR'E K.A. and CHERKAEV A.V., Inhomogeneous rod of extremal torsional rigidity. Izv. Akad. Nauk SSSR, MTT, No.6, 1980.
3. PETROVA I.S. and RIKARDS R.B., Optimization of a rod with variable modulus of elasticity. Mekhanika polymerov, No.2, 1974.
4. RAMMERSTORFER F., on the optimal distribution of the Young's modulus of a vibrating, prestressed beam. J. Sound and Vibr., Vol.37, No.1, 1974.
5. NOWACKI W., Thermoelasticity. Reading, Mass., Addison-Wesley Publ. 1962.
6. MIKhlin s.g., Variational Methods in Mathematical physics. Moscow, Nauka, 1970.
7. MIKHLIN S.G., The Problem of the Minimum of a Quadratic Functional. Moscowmeningrad, Gostekhizdat, 1952.
8. KUNTASHEV P.A. and NEMIROVSKII YU.V., On the solution, in terms of stresses, of the problem of the thermoelasticity of inhomogeneous bodies using the perturbation method. PMM Vol.49, No.2, 1985.
9. RUDIN W., Principles of Mathematical Analysis. N.Y., London, McGraw-Hill, 1976.
10. PSHENICHNYI B.N., Convex Analysis and Extremal Problems. Moscow, Nauka, 1980.
11. BOLEY B.A. anc WEINER J.H., Theory of Thermal Stresses. N.Y. Wiley, 1960.

Translated by L.K.

PMN U.S.S.R., VOL.49,No.3,pp. 374-379,1985
Printed in Great Britain

the plane problem of electroelasticity for a piezoelectric layer with a periodic systell of electrodes at the surfaces*

V.A. KOKUNOV B.A. KUDRYAVTSEV AND N.A. SENIK

Abstract

Static electroelasticity equations are used to study the stress state and the electric-field distribution in a piezoelectric layer at whose surface a periodic system of infinitely thin electrodes is situated. It is assumed that the layer material is piezoelectric belonging to the 6 mm symmetry class, and the axis of symetry is perpendicular to the middle surface of the layer. The mechanical displacements and electric potential are determined, taking the periodicity of the electrode system into account, in the form of trigonometric series, and the electrical and mechanical boundary conditions at the layer surfaces lead to the dual series equations whose solution yields the expression for the electric charge distribution density on each electrode. Formulas are given for determing the electric potential at the layer surfaces between the electrodes, and the mechanical stresses near the electrode edge. It is shown that the normal stresses at the layer surface have a singularity at the electrode edge $/ 1 /$ whose presence may lead to the appearance of microcracks within this zone.

1. We shall consider the plane deformation of a piezoelectric layer $|z|<h,|x|<\infty$ caused by the action of the electric potential difference on the periodic system of electrodes, with the electric potentials V_{0} and $-V_{0}$ on the upper face $z=h$ and lower face $z=-h$ of the layer (Fig.1). In the case of a piezoelectric material of class 6 mm , whose axis of symmetry coincides with the z-axis, the components of the stresses and electric induction are given by the formulas

$$
\begin{align*}
& \sigma_{x x}=c_{11} \frac{\partial u}{\partial x}-c_{13} \frac{\partial u}{\partial z}+e_{31} \frac{\partial q}{\partial z}, \quad \sigma_{2 z}=c_{13} \frac{\partial u}{\partial x}+c_{3 s} \frac{\partial u}{\partial z}-e_{33} \frac{\partial q}{\partial z} \\
& \sigma_{2 x}=c_{44}\left(\frac{\partial u}{\partial z}+\frac{\partial u}{\partial x}\right)+e_{15} \frac{\partial \Psi}{\partial z} \\
& D_{x}=e_{15}\left(\frac{\partial u}{\partial z}+\frac{\partial u}{\partial x}\right)-\varepsilon_{11} s \frac{\partial q}{\partial x}, \quad D_{z}=e_{31} \frac{\partial u}{\partial x}-e_{33} \frac{\partial u}{\partial z}-\varepsilon_{33} \mathrm{~s} \frac{\partial q}{\partial z}
\end{align*}
$$

Here $c_{11}, c_{13}, c_{33}, c_{44}$ are the moduli of elasticity, e_{31}, e_{33}, e_{15} are the piezoelectric moduli, $\varepsilon_{11} s, e_{3 s} s$ are the dielectric constants, u, w are the components of the displacement vector in the direction of the x and z axes respectively, and q is the electric potential.

The mechanical displacements u, u and electric potential are found from the system of
equations of equilibrium and of electrostatics, which can be written, taking equations (1.1) and (1.2) into account, in the form

$$
\begin{align*}
& c_{11} \frac{\partial^{2} u}{\partial x^{2}}+c_{44} \frac{\partial^{2} u}{\partial z^{2}}+\left(c_{13}+c_{44}\right) \frac{\partial^{2} w}{\partial x \partial_{z}}+\left(e_{31}+e_{15}\right) \frac{\partial^{2} \varphi}{\partial x \partial x}=0 \tag{1.3}\\
& \left(c_{13}+c_{44}\right) \frac{\partial^{2} u}{\partial x \partial_{z}}+c_{44} \frac{\partial^{2} w}{\partial x^{2}}+c_{33} \frac{\partial^{2} w}{\partial z^{2}}+e_{33} \frac{\partial^{2} \varphi}{\partial z^{2}}+e_{15} \frac{\partial^{2} \varphi}{\partial x^{2}}=0 \\
& \left(e_{31}+e_{15}\right) \frac{\partial^{2} u}{\partial x \partial_{z}}+e_{15} \frac{\partial^{2} w}{\partial x^{2}}+e_{33} \frac{\partial^{2} w}{\partial z^{2}}-\varepsilon_{11}{ }^{s} \frac{\partial^{2} \varphi}{\partial x^{2}}-\varepsilon_{33} \frac{\partial^{2} \varphi}{\partial z^{2}}=0
\end{align*}
$$

Taking into account the symmetry of the electroelastic state relative to the plane $z=$ 0 and the periodicity of the functions $u(x, z), w(x, z), \varphi(x, z)$ with respect to the x coordinate, we shall write the solution of system (1.3) satisfying the conditions

$$
w(x, 0)=\varphi(x, 0)=\sigma_{z x}(x, 0)=0
$$

in the form of the series

$$
\begin{align*}
& u(x, z)=2 \sum_{n=1}^{\infty}\left[\alpha_{1} A_{1 n} \operatorname{ch}\left(k_{1} \lambda_{n} z\right)+\left(\alpha_{21} B_{1 n}-\alpha_{22} C_{1 n}\right) \operatorname{ch}\left(\delta \lambda_{n} z\right) \times\right. \tag{1.4}\\
& \left.\quad \cos \left(\nu \lambda_{n} z\right)-\left(\alpha_{22} B_{1 n}-\alpha_{21} C_{2 n}\right) \operatorname{sh}\left(\delta \lambda_{n} z\right) \sin \left(\omega \lambda_{n} z\right)\right] \sin \lambda_{n} x \\
& w(x, z)=W_{0} z-2 \Sigma_{\beta}, \quad \varphi(x, z)=\Phi_{0} z-2 \Sigma_{\gamma} \\
& \Sigma_{\times}=\sum_{n=1}^{\infty}\left[-x_{1} A_{1 n} \operatorname{sh}\left(k_{1} \lambda_{n} z\right)-\left(x_{21} B_{1 n}-x_{22} C_{1 n}\right) \operatorname{sh}\left(\delta \lambda_{n} z\right) \cos \left(\omega \lambda_{n} z\right)+\right. \\
& \left.\quad\left(x_{22} B_{1 n}-x_{21} C_{1 n}\right) \operatorname{ch}\left(\delta \lambda_{n} z\right) \sin \left(\omega \lambda_{n} z\right)\right] \cos \lambda_{n} x, \quad x=\beta, \gamma \\
& \chi=\chi\left(k_{1}\right), \chi_{21}-i \gamma_{22}=\gamma(\delta+i \omega), \chi=\alpha, \beta, \gamma \\
& \alpha(k)=a_{12} a_{23}-a_{13} a_{22} . \beta(k)=-a_{11} a_{23}-a_{13} a_{12}, \gamma(k)= \\
& a_{11} a_{22}-a_{12} a_{21} \\
& a_{11}=c_{6} k^{2}-c_{11}, a_{12}=-a_{21}=k\left(c_{13}-c_{44}\right), a_{13}=a_{31}= \\
& \quad-k\left(e_{31}-e_{18}\right) \\
& a_{22}=c_{33} k^{2}-c_{44}, a_{23}=-a_{32}=-e_{33} k^{2}+e_{1 B}, a_{33}=\varepsilon_{33} s k^{2}-\varepsilon_{11} s
\end{align*}
$$

Here $\lambda_{n}=\pi n^{\prime} L, W_{0}, \Phi_{0}, A_{1 n}, B_{1 n} . C_{1 n}$ are constants and $\pm k_{1}, \pm \delta \pm i \omega$ are the roots of the equation $\operatorname{det}\left\|a_{k e}\right\|=0$.

Fig. 1
Using formulas (1.4) we obtair the following expressions for the stresses and the electric induction in the layer

$$
\begin{align*}
& \sigma_{x a}=2 \Sigma_{(m)}, \sigma_{z z}=c_{33} W_{0} \div e_{33} \Phi_{0}+2 \Sigma_{(m)}, \tag{1.5}\\
& \sigma_{x x}=c_{13} W_{0}+e_{31} \Phi_{0}-2 \sum_{n=1}^{\infty} \lambda_{n}\left(-m_{1} k_{1} A_{1 n} \operatorname{ch}\left(k_{1} \lambda_{n} z\right)+\right. \\
& {\left[\left(-\delta m_{2}+\omega m_{s}\right) \operatorname{ch}\left(\delta \lambda_{n} z\right) \cos \left(\omega \lambda_{n} z\right)-\left(\delta m_{\mathrm{a}}+\omega m_{z}\right) \operatorname{sh}\left(\delta \lambda_{n} z\right) \times\right.} \\
& \left.\left.\sin \left(\omega \lambda_{n} z\right)\right] B_{1 n}+\left[\operatorname{idem}\left(m_{2} \rightarrow-m_{3}, m_{3} \rightarrow m_{2}\right)\right] C_{1 n}\right\} \cos \lambda_{n} x \\
& D_{z}=e_{33} W_{0}-\varepsilon_{33} s \Phi_{0}+2 \Sigma_{(n)}^{\prime}, \quad D_{x}=2 \Sigma_{(n)} \\
& \Sigma_{(t)}=\sum_{n=1}^{\infty} \lambda_{n}\left(-l_{1} A_{1_{n}} \operatorname{sh}\left(k_{1} \lambda_{n} z\right) \div\left[-l_{2} \operatorname{sh}\left(\delta \lambda_{n} z\right) \cos \left(\omega \lambda_{n} z\right) \div\right.\right. \\
& \left.\left.l_{3} \operatorname{ch}\left(\delta \lambda_{n} z\right) \sin \left(\omega \lambda_{n} z\right)\right] B_{1_{n}}+\left[\operatorname{idem}\left(l_{2} \rightarrow-l_{s}, l_{s} \rightarrow l_{2}\right)\right] C_{1_{n}}\right) \sin \lambda_{n} x \\
& \Sigma_{(l)}^{\prime}=\sum_{n=1}^{\infty} \lambda_{n}\left\{\frac{l_{1}}{k_{1}} A_{1 n} \operatorname{ch}\left(k_{1} \lambda_{n} z\right) \div\left[\left(\delta^{\prime} l_{2}+\omega^{\prime} l_{3}\right) \operatorname{ch}\left(\delta \lambda_{n} z\right) \cos \left(\omega \lambda_{n} z\right)-\right.\right. \\
& \left.\left(\delta^{\prime} l_{s}-\omega^{\prime} l_{2}\right) \operatorname{sh}\left(\delta \lambda_{n} z\right) \sin \left(\omega \lambda_{n} z\right)\right] B_{1 n_{n}}- \\
& \text { [idem } \left.\left(l_{2} \rightarrow l_{3}, l_{3} \rightarrow-l_{2}\right] C_{2_{n}}\right) \cos \lambda_{n} x, \quad l=m, n \\
& \delta^{\prime}=\frac{\delta}{\delta^{2}+\omega^{2}}, \quad \omega^{\prime}=\frac{\omega}{\delta^{2}+\omega^{2}}
\end{align*}
$$

$$
\begin{aligned}
& m_{1}=e_{15} \gamma_{1}-c_{44}\left(\beta_{1}+k_{1} \alpha_{1}\right), m_{2}=e_{1 s} \gamma_{21}-c_{41}\left(\alpha_{21} \delta-\right. \\
& \left.\quad \omega \alpha_{22}+\beta_{21}\right) \\
& m_{3}=e_{16} \gamma_{22}-c_{41}\left(\delta \alpha_{22}+\omega \alpha_{21}+\beta_{22}\right) \\
& n_{1}=-\varepsilon_{11} s \gamma_{1}-e_{15}\left(\beta_{1}+k_{1} \alpha_{1}\right), n_{2}=-\varepsilon_{11} s \gamma_{21}-e_{15}\left(\delta \alpha_{21}-\right. \\
& \left.\quad \omega \alpha_{22}+\beta_{21}\right) \\
& n_{3}=-\varepsilon_{11} s_{\gamma_{22}}-e_{15}\left(\delta \alpha_{22}+\omega \alpha_{21}+\beta_{22}\right)
\end{aligned}
$$

Here idem (.) denotes the expression obtained from the expression within the preceding square brackets when thesymbols are changed as shown. The following equations were used in deriving (1.5):

$$
\begin{aligned}
& c_{11} \alpha_{21}-c_{13}\left(\delta \beta_{21}-\omega \beta_{22}\right)+e_{31}\left(\delta \gamma_{21}-\omega \gamma_{22}\right)=-\delta m_{2}+\omega m_{3} \\
& c_{11} \alpha_{22}-c_{13}\left(\delta \beta_{22}+\omega \beta_{21}\right)+e_{31}\left(\delta \gamma_{22}+\omega \gamma_{21}\right)=-\delta m_{3}-\omega m_{2} \\
& c_{11} \alpha_{1}-c_{13} k_{1} \beta_{1}-e_{31} k_{1} \gamma_{1}=m_{1} k_{1} \\
& c_{13} \alpha_{1}-c_{33} k_{1} \beta_{1}-e_{33} k_{1} \gamma_{1}=m_{1} k_{2} \\
& c_{13} \alpha_{21}-c_{33}\left(\delta \beta_{23}-\omega \beta_{22}\right)+e_{33}\left(\delta \gamma_{21}-\omega \gamma_{22}\right)=\delta^{\prime} m_{2}+\omega^{\prime} m_{3} \\
& c_{13} \alpha_{22}-c_{33}\left(\delta \beta_{22}-\omega \beta_{21}\right)+e_{33}\left(\delta \gamma_{22}+\omega \gamma_{21}\right)=\delta^{\prime} m_{3}-\omega^{\prime} m_{2} \\
& e_{31} \alpha_{1}-e_{33} k_{1} \beta_{1}-\varepsilon_{33} s_{k} \gamma_{1}=n_{1} k_{1} \\
& e_{31} \alpha_{21}-\epsilon_{33}\left(\delta \beta_{21}-\omega \beta_{22}\right)-\varepsilon_{33} s\left(\delta \gamma_{21}-\omega \gamma_{22}\right)=\delta^{\prime} n_{2}+\omega^{\prime} n_{3} \\
& e_{31} \alpha_{22}-e_{33}\left(\delta \beta_{22}-\omega \beta_{21}\right)-\varepsilon_{33}{ }^{s}\left(\delta \gamma_{22}+\omega \gamma_{21}\right)=\delta^{\prime} n_{3}-\omega^{\prime} n_{2}
\end{aligned}
$$

Suppose there is no mechanical load at $z= \pm h$. Then the conditions

$$
\begin{equation*}
\sigma_{x z}=\sigma_{z z}=0, z= \pm h \tag{1,6}
\end{equation*}
$$

will hold, provided that we assume that

$$
\begin{align*}
& A_{1 n}=k_{1}\left(m_{2}{ }^{2}+m_{3}^{2}\right) \mid \omega^{*} \operatorname{si}\left(\delta \lambda_{n} h\right) \operatorname{ch}\left(\delta i_{n} h\right)- \tag{1.7}\\
& \left.\delta^{\prime} \sin \left(\omega \hat{t}_{n} h\right) \cos \left(\omega \hat{i}_{n} h\right)\right] A_{n}
\end{align*}
$$

$$
W_{0}=-e_{33} \Phi_{0} c_{33}
$$

Substituting expressions (1.7) into (1.5) for $\sigma_{z z}$ and D_{z}. we obtain the electric potential and component $D_{\text {: }}$ of the electric induction vector on the layer surface

$$
\begin{align*}
& \psi(x, h)=\Phi_{0} h-\sum_{n=1}^{\infty} f_{n n} A_{n} \cos \lambda_{\pi} x \\
& D_{2}(x, h)=-\xi_{33} \Phi_{0}-\sum_{n=1}^{\infty} \lambda_{n} f_{i c}^{(\theta)} \cos \lambda_{n} x \tag{1.9}\\
& f_{1 \pi}=\Phi_{1} \operatorname{sh}\left(k_{1} \lambda_{n n} h\right) \operatorname{sh}\left(2 \delta \gamma_{n} h\right)-\Phi_{2} \operatorname{sh}\left(k_{1} \lambda_{n} h\right) \sin \left(2 \omega h_{n} h\right)- \\
& \left.\Phi_{3} \operatorname{ch}\left(k_{1} i_{n} h\right)\left(\operatorname{ch}\left(2 \delta i_{n} h\right)-\cos (2 \omega)_{n} h\right)\right), A_{n}{ }^{(0)}=f_{g_{r}} A_{n} \\
& \left.f_{2 n}=d_{1} \operatorname{ch}\left(k_{1} i_{n} h\right) \operatorname{sh}\left(2 \delta i_{n} h\right)-d_{2} \operatorname{ch}\left(k_{1} \lambda_{n} h\right) \sin (2 \omega)_{\pi} h\right)- \\
& d_{3} \operatorname{sh}\left(k_{1} \hat{A}_{n} h\right)\left(\operatorname{ch}\left(2 \delta \dot{\prime}_{n} h\right) \div \cos \left(2 \omega \hat{\prime}_{n} h\right)\right), \varepsilon_{33}{ }^{*}=\varepsilon_{33}{ }^{s}(1+ \\
& \left.e_{33}{ }^{2}\left(c_{33} \varepsilon_{33}{ }^{5}\right)\right) \\
& \Phi_{1}=k_{1}\left[\gamma\left(m_{2}{ }^{2}-m_{3}{ }^{2}\right) \omega^{\prime}-m_{1} \gamma_{21}\left(\delta^{\prime} m_{3}-\omega^{\prime} m_{2}\right)-\right. \\
& \left.m_{1} \gamma_{22}\left(\delta^{\prime} m_{2}-\omega^{\prime} m_{3}\right)\right] \\
& \Phi_{2}=k_{1} \operatorname{idem}\left(\omega^{\prime} \rightarrow \delta^{\prime} . \delta^{\prime} \rightarrow-\omega^{\prime}\right) \\
& d_{3}=m_{1} k_{1}\left(\delta^{2}-\omega^{\prime 2}\right)\left(m_{2} n_{3}-m_{3} n_{2}\right) \\
& d_{1}=\left[n_{1}\left(m_{2}{ }^{2} \div m_{3}{ }^{8}\right) \omega^{\prime}+m_{2} m_{2}\left(\delta^{\prime} n_{3}-\omega^{\prime} n_{2}\right)-m_{1} m_{2}\left(\delta^{\prime} n_{2}-\omega^{\prime} n_{3}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& B_{1 n}=m_{1}\left\{k _ { 1 } \operatorname { s h } (k _ { 1 } \hat { \lambda } _ { n } h) \left[\left(\delta m_{3}-\omega^{\prime} m_{2}\right\} \operatorname{ch}\left(\delta \hat{\lambda}_{n} h\right) \cos \left(\omega \hat{H}_{, n} h\right)+\right.\right. \\
& \left.\left(\delta^{\prime} m_{2}-\omega^{\prime} m_{3}\right) \operatorname{sh}\left(\delta i_{n} h\right) \sin \left(\omega^{\prime} \prime_{n} h\right)\right]-\operatorname{ch}\left(k_{1} \lambda_{\pi \pi} h\right) \times \\
& \left.\left[m_{3} \operatorname{sh}\left(\delta i_{n} h\right) \cos \left(\omega \lambda_{n} h\right)-m_{2} \operatorname{ch}\left(\delta \lambda_{n} h\right) \sin \left(\omega \lambda_{n} h\right)\right]\right\} A_{n} \\
& C_{\mathrm{n}}=m_{1}\left\{k_{1} \mathrm{sh}\left(k_{1} i_{n} h\right) \mid\left(\delta m_{8}-\omega^{\prime} m_{3}\right\} \operatorname{ch}\left(\delta i_{n} h\right) \cos \left(\omega i_{n} h\right)-\right. \\
& \left.\left(\delta^{\prime} m_{3}-\omega^{\prime} m_{2}\right) \operatorname{sh}\left(\delta \lambda_{\pi_{n}} h\right) \sin \left(\omega i_{n} h\right)\right]- \\
& \operatorname{ch}\left(h_{1} \dot{m}_{n} h\right) \mid m_{3} \operatorname{ch}\left(\delta \dot{H}_{n} h\right) \sin \left(\omega \dot{H}_{n} h\right)- \\
& \left.m_{2} \operatorname{sh}\left(\delta \dot{H}_{7} h\right) \cos \left(\omega_{H_{n}} h\right)\right) A_{n}
\end{aligned}
$$

$$
d_{2}=\operatorname{idem}\left(\omega^{\prime} \rightarrow \delta^{\prime}, \delta^{\prime} \rightarrow-\omega^{\prime}\right), \Phi_{3}=m_{1}\left(\gamma_{22} m_{3}-\gamma_{2 z} m_{1}\right)
$$

We shall write the boundary conditions at the surface $z=h$ in the form

$$
\begin{align*}
& \varphi(x, h)=V_{0}, 0 \leqslant x<a \tag{1.10}\\
& D_{z}(x, h)=0, a<x<L \tag{1,11}
\end{align*}
$$

Then, taking into account (1.8), (1.9) we can conclude that the conditions (1.10), (1.11)
lead to dual series equations for determining the coefficients $A_{n}{ }^{(0)}$

$$
\begin{align*}
& \sum_{n=1}^{\infty} F_{n} A_{n}^{(0)} \cos \lambda_{n} x=V_{0}-\Phi_{0} h . \quad 0 \leqslant x<a ; F_{n}=\frac{f_{1 n}}{f_{2 n}} \tag{1.12}\\
& -\varepsilon_{33} *_{0} \Phi_{0}+\sum_{n=1}^{\infty} \lambda_{n} \cdot 4_{n}^{(0)} \cos \lambda_{n} x=0, \quad a<x<L \tag{1.13}
\end{align*}
$$

2. Passing now to the problem of solving the dual equations (1.12), (1.13), we write them in the form

$$
\begin{align*}
& \sum_{n=1}^{\infty} A_{n}^{(0)} \cos \lambda_{n} x=\beta_{*}\left(V_{0}-\Phi_{0} h\right)+\sum_{n=1}^{\infty} R_{n} A_{n}^{(0)} \cos \lambda_{n} x, \quad 0 \leqslant x<a \tag{2.1}\\
& -\varepsilon_{s s} \Phi_{0}+\sum_{n=1}^{\infty} \lambda_{n} A_{n}^{(0)} \cos \lambda_{n} x=0, \quad a<x<L \tag{2.2}\\
& R_{n}=1-\beta_{*} F_{n}, \quad \lim _{n \rightarrow \infty} R_{n}=0, \quad \beta_{*}=\frac{d_{1}-d_{3}}{\Phi_{1}-\Phi_{s}}
\end{align*}
$$

We introduce the auxilliary function $f(x)$, assuming that

$$
\begin{equation*}
-\varepsilon_{33} * \Phi_{0} \div \sum_{n=1}^{\infty} \lambda_{n} A_{n}^{(m)} \cos \lambda_{n} x=f(x), \quad 0 \leqslant x<a \tag{2.3}
\end{equation*}
$$

Then from (2.2) and (2.3) we obtain

$$
\begin{equation*}
-\varepsilon_{33} \Phi_{0}=\frac{1}{L} \int_{0}^{a} f(t) d \xi, \quad \lambda_{n} A_{n}^{(0)}=\frac{2}{L} \int_{0}^{n} f(t) \cos i_{n} t d t \tag{2.4}
\end{equation*}
$$

Substituting (2.4) into (2.1) and using the expression /2/

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\cos \lambda_{n} x \cos \lambda_{n}^{t}}{\lambda_{n}}=-\frac{L}{2 \pi} \ln \left(2\left|\cos 2 x_{*}-\cos 2 t_{*}\right|\right) \tag{2.5}\\
& \left(x_{*}=\pi x(2 L) \cdot t_{*}=\pi t(2 L)\right)
\end{align*}
$$

we obtain the integral equation in $f(x)$

$$
-\frac{1}{\pi} \int_{0}^{a} f(t) \ln \left(2\left|\cos 2 x_{*}-\cos 2 t_{*}\right|\right) d t=\beta_{*}\left(\Gamma_{0}-\varphi_{0} h\right)+\frac{2}{L} \sum_{n=1}^{\infty} \frac{R_{n} \cos \lambda_{n} I}{\lambda_{n}} \int_{0}^{a} f(t) \cos \lambda_{n} t d t, \quad 0 \leqslant x<a
$$

Tc solve Eq. (2.6) we introduce new variables ξ and 5 connected with x and t by the following relations:

$$
\begin{align*}
& \cos 2 x_{*}=\cos ^{2} a_{*}-\sin ^{2} a_{*} \cos 2 \xi_{*} \tag{2.7}\\
& \cos 2 t_{*}=\cos ^{2} a_{*}-\sin ^{2} a_{*} \cos 2 \\
& \left(\xi=\frac{\pi}{2 L},\right. \\
& \left(\xi *=\frac{2}{2 L}, a_{*}=\frac{\pi u}{2 L}\right)
\end{align*}
$$

Changing to the variables 5 , we shall use the expansion

$$
-\frac{L}{2 \pi} \ln \left(2\left|\cos 2 x_{*}-\cos 2 t_{*}\right|\right)=-\frac{L}{27} \ln \left(2 \sin ^{2} a_{*}\right)-\sum_{k=1}^{\alpha} \frac{\cos i_{k} \cos ^{2} i_{k} x^{2}}{\lambda_{k}}
$$

and write Eq. (2.6) in the form

$$
\begin{align*}
& \beta_{*}\left(\Gamma_{0}-\Phi_{0} h\right)+\sum_{n=1}^{\infty} \frac{R_{n}}{\lambda_{n}} \cos \left(\lambda_{n} x(\xi)\right) \frac{2}{L} \int_{\dot{\theta}}^{i} f^{*}(\xi) \cos \left(\lambda_{n} t(\xi)\right) d * \tag{2.8}\\
& \left(f^{*}(t)=j(t(\xi)) t^{\prime}(b)\right)
\end{align*}
$$

We shall seek the solution of (2.8) in the form of a series

$$
\begin{align*}
& f(t(b)) t^{\prime}(\zeta)=\sum_{m=0}^{\infty} \alpha_{m n} \cos \lambda_{m} 5 \tag{2.9}\\
& \alpha_{0}=\frac{1}{L} \int_{0}^{a} f(t) d t=-\varepsilon_{0 s}^{*} \Phi_{0}
\end{align*}
$$

Then, taking into account the expansions $/ 3 /$

$$
\begin{align*}
& \cos \left(\lambda_{n} x(\xi)\right)=\sum_{k=0}^{\infty} \beta_{k}^{(n)} \cos \lambda_{k} \xi, \cos \left(\lambda_{n} t(\zeta)\right)=\sum_{s=0}^{\infty} \beta_{s}^{(n)} \cos \lambda_{s} \xi \tag{2,10}\\
& \left(n=1,2, \ldots, \beta_{k}^{(n)}=0 \quad \text { for } \quad k>n\right)
\end{align*}
$$

we obtain, from (2.8), an infinite system of algebraic equations for determining the constants α_{m}

$$
\begin{gather*}
\alpha_{0}\left[\ln \left(2 \sin ^{2} a_{*}\right)-\frac{\pi n \beta_{*}}{L_{3} *}-2 \sum_{n=1}^{\infty} \frac{R_{n}}{n}\left(\beta_{0}^{(n)}\right)^{2}\right]+\sum_{s=1}^{\infty} \alpha_{s} \sum_{n=1}^{\infty} \frac{R_{n}}{n} \beta_{0}^{(n)} \beta_{s}^{(n)}=-\frac{n \beta_{0}}{L} V_{0} \tag{2.11}\\
2 \alpha_{0} \sum_{n=1}^{\infty} \frac{R_{n}}{n} \beta_{m}^{(n)} \beta_{0}^{(n)}-\frac{\alpha_{m}}{m}+\sum_{s=1}^{\infty} \alpha_{s} \sum_{n=1}^{\infty} \frac{R_{n}}{n} \beta_{m}^{(n)} \beta_{s}^{(n)}=0 \tag{2.12}\\
(m=1.2 \ldots)
\end{gather*}
$$

Returning in (2.9) to the variable t and using the well-known relations for the chebyshev polynomials $T_{2 m}[2]$, we obtain the following expression for the electric charge density at the upper electrode system:

$$
\begin{equation*}
f(t)=\frac{\cos t_{*}}{\sqrt{\cos ^{2} t_{*}-\cos ^{2} a_{*}}} \sum_{m=0}^{\infty}(-1)^{m} \alpha_{m} T_{2 m}\left(\frac{\sin t_{*}}{\sin a_{*}}\right) \tag{2,13}
\end{equation*}
$$

Taking into account (2.13), we obtain the solution of the system (2.1), (2.2) in the form

$$
\begin{equation*}
A_{n}^{(0)}=\left[2 \alpha_{0} \beta_{0}^{(n)}+\sum_{s=1}^{n} \alpha_{s} \beta_{s}^{(n)}\right] \lambda_{n}^{-1} \tag{2.14}
\end{equation*}
$$

Let us now determine the electric and normal stress $\sigma_{x x}$ at the layer surface $z=h$. Using (1.5), (1.7), (1.8) we fine

$$
\begin{aligned}
& 千(x, h)=\Phi_{0} h-\frac{1}{\pi \beta_{*}} \int_{0}^{a} f(t) \ln \left(2 \cos 2 x_{*}-\cos 2 t_{*}\right) d t-\beta_{*}^{-1} \sum_{n=1}^{\infty} R_{n} A_{n}^{(0)} \cos \lambda_{n} x \\
& \sigma_{x x}(x, h)=\sigma_{x x}^{(0)}-\frac{m_{1}\left(m_{2}^{2}-m_{3}^{2}\right)}{d_{1}-d_{3}}\left(2 \lambda_{1} \omega^{\prime} \delta^{\prime}-\omega-k_{1}^{2} \omega^{\prime}\right) \eta(a-x) f(x)-\frac{m_{1}\left(m_{2}{ }^{2}+m_{3}^{2}\right)}{d_{1}-d_{3}} \sum_{n=1}^{\infty} G_{n} A_{n i}^{(0)} \lambda_{n} \cos \lambda_{n} x \\
& \sigma_{x x}^{(0)}=\left[e_{31}{ }^{*}-\frac{m_{1}\left(m_{2}^{2}+m_{3}^{2}\right)}{d_{1}-d_{3}}\left(2 k_{1} \omega \delta^{\prime}-\omega-k_{1}{ }^{2} \omega^{\circ}\right) \varepsilon_{33}{ }^{*}\right] \Phi_{0} \\
& f_{2 n} G_{n}=g_{1}\left[c h\left(k_{1} \lambda_{n} h\right) \operatorname{sh}\left(2 \delta i_{n} h\right)-\operatorname{sh}\left(k_{1} i_{n} h\right)\left(\operatorname{ch}\left(2 \delta i_{n} h\right)+\right.\right. \\
& \left.\left.\cos \left(2 \omega h_{n} h\right)\right)\right]+g_{2} c h\left(k_{1} h_{n} h\right) \sin \left(2 \hat{D}_{n 7} h\right) \\
& g_{1}=2 k_{1} \omega \delta^{\prime} d_{1}-\left(\omega+k_{2}^{2} \omega^{\prime}\right) d_{3}, \quad e_{31} *=e_{31}\left(1-c_{13} e_{33}^{\prime}\left(c_{33} e_{31}\right)\right) \\
& g_{2}=\left(2 k_{1} \omega \delta^{\prime}-\omega-k_{1}^{2} \omega^{\prime}\right) d_{2}-\left(\delta-k_{2}^{2} \delta^{\prime}\right)\left(d_{1}-d_{3}\right)
\end{aligned}
$$

($\eta(x)$ is a unique function). Eg. (2.16) implies that the stress $\sigma_{x x}(x, h)$ has a singularity at the edge of the electrode.
3. A numerical analysis of the electroelastic fields in the strip was carried out for the piezoelectric material $\mathrm{P} 2 \mathrm{~T}-4(4)$ for $a \%=3, L /=18$. In the series representing the coefficients accompanying the unknowns $\alpha_{0}, \alpha_{1} \ldots$ of system (2.11), (2.12), only the first four were retained. The truncated system was used to determine α_{0}....,

Fig. 2

$$
\begin{aligned}
& \varphi(x, h)=\Phi_{0} h-\frac{\alpha_{0} L}{\pi \beta_{*}} \ln \left(2 \sin ^{2} a_{*}\right)+ \\
& \quad \beta_{*}^{-1} \sum_{n=1}^{\infty}\left\{\frac{\alpha_{n}}{A_{n}}(-1)^{n} T_{2 n}\left(\gamma_{*}\right)-R_{n} A_{n}^{(0)} \cos {\lambda_{n}}^{r}\right\} \\
& 0 \leqslant x<a, \quad\left(\gamma_{*}=\sin x_{*} \sin a_{*}\right)
\end{aligned}
$$

was used to confirm condition (2.10). The discrepancy in satisfying concition (1.10) did not exceed lf for all values $0 \leqslant \pi<a$. In
the region outside the electrodes, the electric field potential at $z=h$ was calculated using formula

$$
\begin{align*}
& \Psi(x, h)=\Phi_{0} h-\beta_{*}^{-1} \sum_{n=1}^{\infty} R_{n} A_{n}^{(0)} \cos \lambda_{n} x- \tag{3.1}\\
& -\beta_{*}^{-1} \sum_{m=0}^{\infty}(-1)^{m} \alpha_{m} \int_{0}^{\pi / 2} \cos (2 m \eta) \ln \left(4\left|\cos ^{2} \eta \sin ^{2} a_{*}-\sin ^{2} x\right|\right) d \eta
\end{align*}
$$

obtained from (2.15), (2.13) after transforming the integral term. We note that the quadratures appearing in (3.1) can be computed for $m=0,1(|x|>a)$ Fig. 2 shows how $\varphi_{*}=\varphi / V_{0}$ changes with x when $z=h$ (dashed line). The solid lines show the variation in the stress $\sigma=\sigma_{x x} h /\left(V_{0} e_{31}\right)$, computed from (2.16). Analysis of the numerical results shows that at the edge of the electrode the stress $\sigma_{x x}$ has a root-type singularity caused by the change in the electrical boundary conditions.

REFERENCES

1. KUDRYAVTSEV B.A., Electroelastic state of a half-plane, made of piezoceramic material, with two boundary electrodes. Problemy prochnosti, No.7, 1982.
2. GRADSHTEIN I.S. and RYZHIK I.M., Tables of Integrals, Sums, Series and Products, Moscow, Fizmatgiz, 1963.
3. HUSSAIN M.A. and PU S.I., Dynamic stress intensity factor for an unbounded plate having collinear cracks. Engng Fract. Mech., Vol.4, No.4, 1972.
4. BERIINKUR D., CURRAN D. and JAFFE G., Piezoelectric and piezomagnetic materials and their use in transducers. In: Physical Acoustics. Vol.1, Ch. A.M., Mir, 1966.
